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Abstract-Both the exact closed-form solution and a numerical solution by the differential quad­
rature method (DQM) are obtained to predict the out-of-plane static behavior of a curved shaft
subjected to end torques, based on the curved-beam versions of the classical (Bernoulli-Euler) and
shear deformable (Bresse-Timoshenko) beam theories. Deflections, twist angles, bending moments,
and twisting moments are calculated for the cases of a circular arc of circular cross section with
clamped and simply supported boundary conditions, and results obtained by the two methods
compared, The DQM gives good accuracy even when only a limited number of grid points is used,

1. INTRODUCTION

The out-of-plane behavior of a curved shaft due to torque has been previously treated by
Eubanks (1963), Cheney (1965) and Bert (1989) based on the classical curved beam theory
in which transverse shear deformation is not considered. The first paper was based on an
unwieldy approach using the Kirchhoff rod equations, the second used thin-ring theory but
obtained an erroneous solution, and the third was formulated from thin-ring theory and
was solved directly assuming that the twisting moment was uniformly distributed. The
purposes of the present work are: (1) to obtain exact solutions for out-of-plane deflections,
twist angles, bending moments and twisting moments in a curved shaft due to end torques,
based on both the classical and shear deformable beam theories; and (2) to demonstrate
the application of the differential quadrature method to obtain accurate approximate
solutions. Numerical results are presented for a circular arc of circular cross section with
clamped and simply supported boundary conditions.

2. FORMULATION AND CLOSED-FORM SOLUTIONS

2.1. Classical beam theory
The curved shaft considered is shown in Fig, I. The equilibrium equations for out-of­

plane bending and twisting of a thin circular arc can be expressed as follows [cf. Volterra
(1952)] :
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Fig. 1. Geometry of curved shaft.
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M~+M~ = 0; -M,+M~ = 0 (1)

where M x and M z are the respective bending and twisting moments at a given circumferential
angular position e, and a prime denotes differentiation with respect to e.

The constitutive equations for small deflections and rotations are

(2)

(3)

where Elx and GJ are the respective flexural and torsional rigidities, R is the center-line
radius of the member, v is the out-of-plane deflection, and <I> is the twist angle. Substituting
M x and M z from eqns (2) and (3) into eqn (1) gives the following governing differential
equations

(
GJ)V" GJ1+ - - + - <I>" - <I> = O.
Elx REI,

Now, using v" from eqn (5) in eqn (4), one obtains the following differential equation

<I>"" + 2<I>" + <I> = 0

which has the general solution

(4)

(5)

(6)

(7)

where the C's are constants of integration. In view of eqn (5), the general solution for the
out-of-plane deflection is

Vee) -. _ _. _ _ _
If = -C1 cosO-C2 smO-C30smO-C4 0cosO

2C3 cos e 2C4 sin e -
(GJjEI,) + 1 + (GJjEIJ+l +EoO+E1 (8)

where Eo and E I are additional constants of integration.
Choosing the origin for eto be at the midpoint of the member and using the anti­

symmetric nature of the problem, one may write

vee) = -v( -e). (9)

Thus, E I , C I , and C3 must vanish.
If the member is simply supported flexurally at each end, then the boundary conditions

can be expressed in the following form

(10)

where C( is one half of the total included angle of the member and T is the applied torque
at each end of the member. Thus
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(11)

If the member is clamped flexurally at each end, then the boundary conditions can be
expressed in the following form

v(±a) = 0, v'(±a) = 0, Mz(±a) = ±T.

Thus

TR (GJ/Elx ) + 1
Bo=- C4 = qBoGJ 2qcosa+(GJ/Elx ) + l'

1 [ ( 2 sin a ) ]
C2 = sina C4 (GJ/El

x
) + 1 -acosa +Boa

where q = (sin a - a cos a)/(sin a cos IX - a).

(12)

(13)

(14)

2.2. Shear-deformable beam theory
Rao (1971), neglecting the warping deformation (as is appropriate for the circular

cross section considered here), obtained the following equilibrium equations

G v" G
K-S~ -K-S,¥I = 0
ERE

(15)

(16)

(17)

where K is the shear correction factor and '¥ is the angle of rotation due to pure out-of­
plane bending. For simplicity of analysis, the following dimensionless variables have been
introduced

(18)

where A is the cross-sectional area, s is the slenderness ratio and f1. is the rigidity ratio of
the member. Substituting VI from eqn (16) into eqn (15) and using the antisymmetric nature
of the problem gives the following general solutions

(19)

(20)

(21)

If the member is simply supported flexurally at each end, then the boundary conditions can
be expressed in the following form



1590

Thus

K. Kang et al.

EIx
MA±IX) = ±R(<I>-'I") = 0, V(±IX) = 0

GJ
Mz(±IX) = ±R('I'+<I>') = ±T.

C6 = -/!- (1 + IJ )Ao, Cs = O.smlX xKS

(22)

(23)

(24)

If the member is clamped flexurally at each end, then the boundary conditions can be
expressed in the following form

Thus

TR Jl+l (J)Ao=- , A]= 1+--AoGJ 2pcoslX+Jl+ 1 I,Ks

(25)

(26)

1 [ (2 sin IX ) ]C6 = -.- Cs --1 -IXCOSIX +A,IX ,
sm IX Jl+

where p = [sin IX - (1 +JjIxKs) IX cos lX]j(sin IX cos IX -IX).

(27)

3. DIFFERENTIAL QUADRATURE METHOD

The differential quadrature method (DQM) was introduced by Bellman and Casti
(1971). The method was applied for the first time in static beam analysis by lang, Bert and
Striz (1989). From a mathematical point of view, the application of the differential quad­
rature method to an ordinary differential equation can be expressed as follows:

N

L{j(X)}i = L Wijf(xJ
j~ 1

(28)

where L denotes a differential operator, xj are the discrete points considered in the domain,
f(x) are the function values at these points, W ij are the weighting coefficients corresponding
to the order of the derivative L and calculated based on the geometry of the discrete points
Xi, and N denotes the number of discrete points in the domain. The general form of the
functionf(x) is taken as

f(x) = .0- 1 for k = 1,2,3, ... , N.

If the differential operator L represents an nth derivative, then

(29)

N

L Wijxj-J =(k-I)(k-2) ... (k-n).0;-n-1 for i,k= 1,2, ... ,N. (30)
j~l

This expression represents N sets of N linear algebraic equations which give a unique
solution for the weighting coefficients, Wij, since the coefficient matrix is a Vandermonde
matrix which always has an inverse, as described by Hamming (1973). Thus, the method
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can be used to express the derivatives of a function at a discrete point in terms of the
function values at all discrete points in the variable domain.

4. APPLICAnON

The method of differential quadrature is applied here to the analysis of the out-of­
plane behavior of a curved shaft based on the classical and shear-deformable beam theories.
The differential quadrature approximations of the governing equations and boundary
conditions are presented next.

4.1. Classical beam theory
Applying the differential quadrature method to eqns (4) and (5) gives

(31 )

(32)

where Bij and Dij are the weighting coefficients for the second and fourth derivatives,
respectively, along the dimensionless axis X defined as

X = 8/80 , (33)

Here 8 is the circumferential angular position measured from the left support and 80( = 20()
is the total opening angle.

Considering the antisymmetry of the loading, one can express the boundary conditions
for simply supported ends, given by eqn (10), and the deflection at the midpoint of the
member in differential quadrature form as follows:

atX = 0+t5:

atX = 0.5: V(N+l)/2 = 0 (34)

atX = 1-t5:

atX = 1-t5:

atX = I: VN = 0 (35)

where A 2j and A(N_')j are the weighting coefficients for the first derivatives. Here b denotes
a very small dimensionless distance measured along the dimensionless axis from each
boundary end. This set of equations together with the appropriate boundary conditions
can be solved for the deflections and twist angles.

Similarly, the boundary conditions for clamped ends, given by eqn (12), and the
deflection at the midpoint of the member can be expressed in differential quadrature form
as follows:
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atX = 0: VI = 0

N

atX = O+b: I A2jVi = 0
j~ 1

atX=0.5: V(N+l)/2=O (36)

atX = I-b:

atX = 1-b:

N

I A(N-l)jVj = 0
j~ 1

atX= l:vN=O. (37)

The bending moments and twisting moments, given by eqns (2) and (3), can be expressed
in differential quadrature form as follows:

(38)

(39)

4.2. Shear-deformable beam theory
Laura and Gutierrez (1993) applied the differential quadrature method to the analysis

of vibrating Bresse-Timoshenko straight beams. Applying the method to shear-deformable
curved beams, eqns (15)-(17), one obtains

(40)

The boundary conditions for simply supported ends, given by eqn (22), and the
deflection at the midpoint of the member can be expressed in differential quadrature form
as follows:

atX=O: v1=O

1 N

atX = O+b: eOj~l A2jl1>j+'P2 = TRIG]

atX = O+b: E~x (l1>2 - ;oJ, A 2j'Pj) = 0

atX=O.5: V(N+l)/2=O (41)



Static analysis of a curved shaft 1593

atX = l-b:

atX= l-b:

at X = I: VN = O. (42)

Similarly, the boundary conditions for clamped ends, given by eqn (25), and the deflection
at the midpoint of the member can be expressed in differential quadrature form as follows:

atX = 0: VI = 0

I N

atX=O+b: eOj~IA2j<l>j+'P2 = TRIG]

atX = O+b: 'P2 = 0

atX=0.5: V(N+I)!2=0

atX= I-b: 'PN_ 1 =0

I N
atX= I-b: -e I A(N_I)j<l>j+'P(N_I) = TRIG]

Oj~l

atX=I: VN=O.

(43)

(44)

The bending moments and twisting moments, given by eqn (22), can be expressed in
differential quadrature form as follows:

(45)

(46)

5. NUMERICAL RESULTS AND COMPARISONS

Based on the above derivations, the deflections, twist angles, bending moments and
twisting moments for the out-of-plane behavior of the member are calculated by a closed­
form solution and by the differential quadrature method. The deflections, twist angles,
bending moments and twisting moments are evaluated for the case of a circular arc with
circular cross section under clamped and simply supported boundary conditions. Numerical
results are compared between the two solution methods. The ratio of center-line radius R
to radius of cross section r is 5.0, and the Poisson's ratio, V, of the member is 0.3.

For classical thin curved beam theory, Tables I and 2 present the results ofconvergence
studies relative to the number of grid points N and the b parameter, respectively. Table I
shows that the accuracy of the numerical solution increases with increasing N, passes

Table I. Twist angle l1>* = l1>GJ/TR for out-of-plane behavior of circular arc
shaft and clamped ends with circular cross section for a range of grid points,

using classical beam theory; v = 0.3, liD = 1800 and J = I X 10-5

Number of grid points

() Exact

-0.8511

7

-0.8597

9

-0.8509

II

-0.8512

13

-0.8512
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Table 2. Twist angle <1>* = <l>GJjTR for out-of-plane behavior of circular arc
shaft and clamped ends with circular cross section for a range of ii, using

classical beam theory; v = 0.3, 80 = 180' and N = 13

8 Exact

-0.8511

I X 10- 1

-0.8537

1 X 10-4

-0.8514

1 X 10-5

-0.8512

1 X 10-6

-0.8511

through a maximum, but then decreases due to numerical instabilities if N becomes too
large. Table 2 shows how the numerical solution is sensitive to the choice of b. The optimal
value of b is found to be 1 x 10-5 to 1 X 10-6

, which is obtained from trial-and-error
calculations. The solution accuracy decreases due to numerical instabilities if {) becomes
too small or too large. The remainder of the numerical results are computed with thirteen
discrete points along the dimensionless x-axis and {) = I x 10- 5

• For members with either
simply supported or clamped ends and an opening angle of 1800

, the results are summarized
for classical beam theory in Tables 3 and 4. The shear correction factor K is the established
value (0.89) for a circular cross section using elasticity theory. Tables 5 and 6 summarize
the results for such members with simply supported and clamped ends, respectively, and
an opening angle of 180°. The bending moments and twisting moments are summarized in
Tables 7-10. From Tables 3 and 5, for the case of clamped ends, the deflections v* based
on classical beam theory are larger than those based on shear-deformable beam theory, but
the twist angles <1>* are smaller. In Tables 4 and 6, for the case of simply supported ends,
both deflections and twist angles based on classical beam theory are smaller than those based
on shear-deformable beam theory. From Tables 7-10, the twisting moment distribution
M:is uniform for simply supported ends, but varies for clamped ends. The bending moment
M~ is identically zero along the entire length of the member for simply supported ends, but
varies for clamped ends. As can be seen, the numerical results show excellent agreement
with the exact solutions.

Table 3. Deflection v* = vGJjTR 2 and twist angle 11l* = <l>GJ/TR for out-of-plane
behavior of circular arc shaft and clamped ends with circular cross section, using

classical beam theory; v = 0.3 and 80 = 1800

v* <1>*

e Exact DQM Exact DQM

0' 0.0 0.0 -0.8511 -0.8512
18° -0.009935 -0.009933 -0.5623 -0.5623
36° -0.02435 -0.02435 -0.3359 -0.3359
54° -0.02863 -0.02863 -0.1767 -0.1767
72° -0.01897 -0.01897 -0.07281 -0.07281
90 0 0.0 0.0 0.0 -2.0 X 10- 7

Table 4. Deflection v* = vGJjTR 2 and twist angle <1>* = l1lGJITR for out-of-plane
behavior of circular arc shaft and simply supported ends with circular cross

section, using classical beam theory; v = 0.3 and 80 = 1800

v* 11l*

e Exact DQM Exact DQM

0° 0.0 0.0 -1.571 -1.571
18° 0.2373 0.2373 -1.494 -1.494
36° 0.3283 0.3283 -1.271 -1.271
54° 0.2950 0.2950 -0.9233 -0.9233
72° 0.1712 0.1712 -0.4854 -0.4854
90 0 0.0 0.0 0.0 -5.5xIO· 7
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Table 5. Deflection v* = vGJ/TR' and twist angle c1I* = c1IGJ/TR for out-of-plane
behavior of circular arc shaft and clamped ends with circular cross section, using

shear-deformable beam theory; v = 0.3, 00 = 1800 and R/r = 5.0

v* c1I*

0 Exact DQM Exact DQM

0° 0.0 0.0 -0.8864 -0.8865
18° -0.004602 -0.004603 -0.5958 -0.5959
36° -0.01697 -0.01697 -0.3645 -0.3645
54° -0.02201 -0.02201 -0.1974 -0.1974
72° -0.01512 -0.01512 -0.08371 -0.08371
90° 0.0 0.0 0.0 -2.1 X 10-7

Table 6. Deflection v* = vGJ/TR' and twist angle c1I* = c1IGJ/TR for out-of-plane
behavior of circular arc shaft and simply supported ends with circular cross
section, using shear-deformable beam theory; v = 0.3, eo = 180° and R/r = 5.0

v* c1I*

0 Exact DQM Exact DQM

0° 0.0 0.0 -1.606 ~ 1.606
18° 0.2426 0.2426 -1.528 -1.528
36° 0.3357 0.3357 -1.300 -1.299
W 0.3016 0.3016 -0.9440 -0.9440
72° 0.1751 0.1751 -0.4963 -0.4963
90° 0.0 0.0 0.0 -6.2 X 10-7

Table 7. Bending moment M~ = MxlTand twisting moment M: = Mz/T for out­
of-plane behavior of circular arc shaft and clamped ends with circular cross

section, using classical beam theory; v = 0.3 and eo = 180°

M~ M:

0 Exact DQM Exact DQM

00 -0.7197 -0.7197 1.0 1.0
18° -0.6844 -0.6844 0.7776 0.7776
360 -0.5822 -0.5822 0.5770 0.5770
54° -0.4230 -0.4230 0.4178 0.4178
72° -0.2224 -0.2224 0.3156 0.3156
90° 0.0 0.0 0.2803 0.2804

Table 8. Bending moment M~ = Mx/T and twisting
moment M: = M,/T for out-of-plane behavior of cir­
cular arc shaft and simply supported ends with circular
cross section, using classical beam theory; v = 0.3 and

eo = 180°

M~ M:

0 Exact DQM Exact DQM

0° 0.0 2.6 X 10-9 1.0 1.0
18° 0.0 2.4 x 10-6 1.0 1.0
36° 0.0 2.5 x 10-6 1.0 1.0
54° 0.0 2.5 x 10-6 1.0 1.0
72° 0.0 2.2 X 10-6 1.0 1.0
90° 0.0 1.6 X 10-6 1.0 1.0

1595
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Table 9. Bending moment M~ = M,/T and twisting moment
M; = M,/T for out-of-plane behavior of circular arc shaft and
clamped ends with circular cross section, using shear-deformable

beam theory; v = 0.3, eo = 180°, and R/r = 5.0

M* M;x

e Exact DQM Exact DQM

0° -0.7197 -0.7197 1.0 1.0
18° -0.6844 -0.6844 0.7776 0.7776
36° -0.5822 -0.5822 0.5770 0.5770
W -0.4230 -0.4230 0.4178 0.4178
72° -0.2224 -0.2224 0.3156 0.3156
900 0.0 0.0 0.2803 0.2804

Table 10. Bending moment M~ = M,/T and twisting
moment M; = M,/T for out-of-plane behavior of cir­
cular arc shaft and simply supported ends with circular
cross section, using shear-deformable beam theory;

v = 0.3, eo = 180° and R/r = 5.0

M~ M;
-------

e Exact DQM Exact DQM

0° 0.0 2.0 X 10- 9 1.0 1.0
18° 0.0 1.2 x 10- 6 1.0 1.0
36° 0.0 9.4 x 10- 7 1.0 1.0
54° 0.0 4.2 x 10- 8 1.0 1.0
72° 0.0 4.9 X 10- 7 1.0 1.0
90° 0.0 lAx 10-6 1.0 1.0

The differential quadrature method can be applied in the case ofa shaft ofcontinuously
varying cross section. The method was applied in the case of a beam of varying cross section
by Laura and Gutierrez (1993).

6. CONCLUSIONS

Both closed-form analytical and differential quadrature methods were used to compute
the deflections, twist angles, bending moments, and twisting moments for the out-of-p1ane
behavior of a curved shaft under end torques, based on the classical and shear-deformable
beam theories. The DQM gives results which agree very well with the exact ones for the
cases treated while requiring only a limited number of grid points.
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